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ABSTRACT: In this paper we prove a common fixed point theorem for weakly compatible maps in complex 

valued metric spaces without using the notion of continuity. Our result generalizes and extends the results of  

S. Bhatt, S. Chaukiyal and R.C. Dimri. 
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I. INTRODUCTION AND PRELIMINARIES 

Metric spaces form a special class of cone metric 

spaces, yet this idea is intended to define rational 

expressions which are not meaningfull in cone metric 

spaces and thus many results of analysis cannot be 

generalized to cone metric spaces. Indeed the definition 

of a cone metric space banks on the underlying Banach 
space which is not a division Ring. However, in 

complex valued metric spaces, we can study 

improvements of a host of results of analysis involving 

divisions. In this paper we proved coincidence point 

common fixed point theorem involving two pair of 

compatible mappings satisfying complex inequality in 

complex valued metric space. 

A. Azam, B. Fisher and M. Khan [2], 

introduced the concept of complex valued metric spaces 

and obtained sufficient conditions for the existence of 

common fixed points of a pairs of mappings satisfying 

contractive type condition. Plenty of material is also 
available in other generalized metric spaces, such as, 

rectangular metric spaces. Pseudo metric spaces, fuzzy 

metric spaces, quasi metric spaces, quasi semi metric 

spaces, probabilistic metric spaces, D-metric spaces and 

cone metric spaces [3-16]. The idea of complex valued 

metric spaces can be exploited to define complex 

valued normed spaces and complex valued Hilbert 

spaces; additionally, it offers numerous research 

activities in mathematical analysis. Consistent with A. 

Azam, B. Fisher and M. Khan [2], the following 

definitions and results will be needed in the sequel. 

 Let ₵ be the set of complex numbers and let z1,z2∈₵. 

Define a partial order ≤ on ₵ as follows: z1≤ z2if and 

only if Re(z1 ) ≤ Re(z2),Im(z1 ) ≤ Im Re(z2).It follows 

that z1≤ z2 if one of the following conditions is 

satisfied: 

Re(z1) = Re(z2), Im(z1) ≤ Im Re(z2) 

Re(z1) ≤ Re(z2), Im(z1) = Im Re(z2) 

Re(z1) < Re(z2), Im(z1) <Im Re(z2) 

Re(z1) = Re(z2), Im(z1) = Im Re(z2) 

In particular, we will write z1≤ z2 if one of (1),(2) and 

(3) is satisfied and we write z1< z2 if only (3) is 

satisfied. 

 Definition 1.1. [2] Let X be a non-empty set. Suppose 

that the mapping d:X× X→ ₵ satisfies:  

0≤ d(x, y) for all x, y∈ X and d(x, y)=0 if and only if 

x=y; 

 (b) d(x, y)=d(y, x) for all x, y∈ X;  

 (c) d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈X.  

 Then d is called a complex valued metric on X and (X, 

d) is called a complex valued metric space. 

Example 1.1. [17] Let X = C be a set of complex 

number. Define d : ₵ × ₵ → ₵, by 

d(z1, z2) = |x1 − x2| + i|y1 − y2|, where z1 = x1 + iy1 and z2 

= x2 + iy2. Then (X, d) is a complex valued metric 
space. 

Example 1.2. [18] Let X = ₵ be a set of complex 

number. Define d : ₵ × ₵ → ₵, by 

d(z1, z2) = ��� |z1 − z2|, where k ∈ R, z1 = x1 + iy1 and z2 

= x2 + iy2. Then (X, d) is a complex valued metric 

space. 

Definition 1.2. [2] Let (X, d) be a complex valued 

metric space and A ⊆ X 

(i) x ∈ X is called an interior point of a set B whenever 

there is 0 < r ∈ ₵ 

such that B(x, r) ⊆ A where B(b, r) = {y ∈ X : d(x, y) < 

r}. 

(ii) A point x ∈ X is called a limit point of A whenever 

for every 0 < r ∈ ₵, B(x, r) ∩ (A\X) ≠ ∅. 

(iii) A subset A ⊆ X is called open whenever each 

element of A is an interior point of A. A subset B ⊆ X 
is called closed whenever each limit point of B belongs 

to B.The family F = {B(x, r) : x ∈ X, 0 < r} is a sub-

basis for a topology on X. We denote this complex 

topology by τc. Indeed, the topology τc is Hausdorff. 
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Definition 1.3. [2] Let (X, d) be a complex valued 

metric space and {xn}n≥1 be a sequence in X and x ∈ X. 

We say that 

(i) The sequence{xn}n≥1 converges to x if for every c ∈ 

₵, with 0 < c there is 

n0 ∈ N such that for all n > n0, d(xn, x) < c,. We denote 

this by limn xn = x, 

or xn → x, as n → ∞, 

(ii) The sequence{xn}n≥1 is Cauchy sequence if for 

every c ∈ ₵ with 0 < c there is n0 ∈ N such that for all n 

> n0, d(xn, xn+m) < c, 
(iii) The metric space (X, d) is a complete complex 

valued metric space, if every Cauchy sequence is 

convergent. 

Definition 1.4. [1]. let S and T be two self-maps 

defined on set X. Then S and T are said to be weakly 

compatible if they commute at their coincidence points. 

Lemma 1.1 [2]. Let (X, d) be a complex valued metric 

space and  {xn}a sequence in X. Then {xn} converges to 

x if and only if  |d(x�, x) |→0 as n→∞ . 

 Lemma 1.2 [2]. Let (X, d) be a complex valued metric 

space and  {xn}a sequence in X. Then {xn} is a Cauchy 

sequence if and only if|d(x���, x) |→0 as n→∞ .   

II. MAIN RESULT 

Theorem 2.1. Let (X, d) be a complex valued metric 

space  and  let f, g, S and T are four self maps of  X 

such that T(X)⊆ f(X) and S(X) ⊆ g(X) and satisfying 

d(Sx, Ty) ≤ a d(fx, gx)  + b [ d(fx, Sx) + d(gy,Ty) ] + 

c[
�(��,   ��)��(��,   ��)

���(��,   ��) �(��,   ��) 
] +e [d(fx, Sx) + d(fx, gy) ] + h 

[d(fx, Ty) − d(gy, Ty) ]                                           (2.1)  

Where a, b, c, e, h ≥ 0 & a+2b+2c+2e+h<1 suppose that 
the pair {f, S} and {g, T}are weakly compatible. Then 

f, g, S and d T have a unique common fixe point. 

Proof: suppose  x0 is an arbitrary point of X. Define the 

sequence  {yn} such that 

Y2n  = Sx2n = g x2n+ 1 

Y2n  +1= Tx2n+1 = f x2n+2 
d(y2n,y2n+1) = d(Sx2n,Tx2n+1) 

                     ≤  a d(fx2n,gx2n+1)  + b [ d(fx2n,Sx2n) + d(gx2n+1,Tx2n+1) ] +    

                         c[
�(����,   ������)�(������,   ����)

���(����,   ������) �(������,   ����) 
] +e [d(fx2n,Sx2n) + d(fx2n,gx2n+1) ] + h   

                        [d(fx2n,Tx2n+1) − d(gx2n+1,Tx2n+1) ]   

                     ≤  a d(fx2n,gx2n+1) + b [ d(fx2n,Sx2n) + d(gx2n+1,Tx2n+1) ] + c[d(fx2n,Tx2n+1) +  

                         d(gx2n+1,Sx2n)]+e [d(fx2n,Sx2n) + d(fx2n,gx2n+1) ] + h [d(fx2n,Tx2n+1) –  

                        d(gx2n+1,Tx2n+1) ]  

                     ≤ a d(y2n-1,y2n) + b [d(y2n-1,y2n)+ d(y2n,y2n+1)]+c[d(y2n-1,y2n+1)+ d(y2n,y2n)]+  

                        e[d(y2n-1,y2n) + d(y2n-1,y2n)]+h[d(y2n-1,y2n+1)- d(y2n,y2n+1)] 

                     ≤ a d(y2n-1,y2n) + b [d(y2n-1,y2n)+ d(y2n,y2n+1)]+c[d(y2n-1,y2n+1)+ d(y2n,y2n)]+  
                        e[d(y2n-1,y2n) + d(y2n-1,y2n)]+h[d(y2n-1,y2n)+ d(y2n,y2n+1)- d(y2n,y2n+1)] 

                    ≤ (a+b+c+2e+h) d(y2n-1,y2n) + (b + c) d(y2n,y2n+1) 

                    ≤ 
������ !�"

�#$#%
d(y2n-1, y2n) 

                    ≤ k d(y2n-1,y2n) 

Where   k  = 
������ !�"

�#$#%
 

Similarly it can be shown that d(y2n+1, y2n+2) ≤  k d(y2n, y2n+1) 

Therefore, 

d(yn+1, yn+2) ≤ k d(yn, yn+1) ≤ ......... ≤ kn+1 d(y0, y1) 

Now for  all  m>n 

d(yn, ym) ≤  d(yn, yn+1)+ d(yn+1, yn+2)+..........+ d(ym-1, ym) 

             ≤  (kn+ kn+1+.............+ km-1) d(y1,y0) 

             ≤ 
&�

�#&
d(y1, y0) 

| d(y�,  y�) | ≤  
&�

�#&
| d(y�,  y()| 

Which implies that | d(y�,  y�) | →0 as m, n→∞. 

Hence {yn}is a cauchy sequence, since  X is complete , there exist a point z in X such that lim,→∞ Sx� = 

lim,→∞ gx��� = lim,→∞ Tx ���= lim,→∞ fx ��  = z. 

Since T(X)⊆ f(X) ,there exist a point  u ∈X such that z = fu. 

Then by (2.1)  we have  

d(Su, z) ≤ d(Su, Tx2n-1) + d(Tx2n-1, z) 

             ≤  a d(fu, gx2n-1)  + b [ d(fu, Su) + d(gx2n-1, Tx2n-1) ] + c[
�(�2,   ����3�)��(����3�,   �2)

���(�2,   ����3�) �(����3�,   �2) 
]    

                +e [d(fu, Su) + d(fu, gx2n-1) ] + h [d(fu,Tx2n-1) − d(gx2n-1,Tx2n-1) ] + d(Tx2n-1, z) 
             ≤ a d(fu, gx2n-1)  + b [ d(fu, Su) + d(gx2n-1,Tx2n-1) ] +  c[d(fu, Tx2n-1) + d(gx2n-1, Su)] +  

                 e [d(fu, Su) + d(fu, gx2n-1) ] + h [d(fu, Tx2n-1) − d(gx2n-1, Tx2n-1) ] + d(Tx2n-1, z)  
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Taking limit n→∞, yields, 

d(Su, z) ≤  a d(z, z) + b [ d(z, Su) + d(z, z) ] + c[d(z, z)+ d(z, Su)] +e [d(z, Su)+ d(z, z)]+ 

                  h[d(z, z) - d(z, z) ]+ d(z, z)  

d(Su, z) ≤ (b + c + e) d(Su, z), a contradiction. 

Since a + 2b + 2c + 2e + h < 1. Therefore Su = fu= z, since S(X)⊆g(X), there exists a point v ∈X, such that z = gv . 
Then by (2.1) we have, 

d(z, Tv) ≤ d(Su, Tv) 

              ≤ a d(fu, gv) + b[d(fu, gv) + d(gv, Tv)] +c [
�(�2,   �4)��(�4,   �2)

���(�2,   �4)�(�4,   �2)
] 

                +e[d(fu, Su) + d(fu, gv)]+h [d(fu, Tv) - d(gv, Tv)] 

              ≤ a d(fu, gv) + b[d(fu, gv) + d(gv, Tv)] +c [[d(fu, Tv) + d(gv, Su)]] 

                +e[d(fu, Su) + d(fu, gv)]+h [d(fu, Tv) - d(gv, Tv)] 

d(z, Tv) ≤  a d(z, z) + b [ d(z, z) + d(z, Tv) ] +c[d(z, Tv)+ d(z, z)]  

                +e [d(z, z)+ d(z, z)]+h[d(z, Tv) - d(z, Tz) ] 

d(z, Tv) ≤ (b + c) d(z, Tv) , a contradiction. Since a + 2b + 2c + 2e + h < 1. Therefore Tv = gv= z and so Su = fu = 
Tv = gv =z. Since f and S are weakly compatible maps then Sfu = fSu and so  Sz = fz . Now we show that z is a 

fixed point of  S, if  Sz ≠ z from (2.1) we have,  

d(Sz, z) ≤ d(Sz, Tv) 

             ≤ a d(fz, gv) + b[d(fz, Sz) + d(gv, Tv)] +c [
�(�5,   �4)��(�4,   �5)

���(�5,   �4)�(�4,   �5)
]+e[d(fz, Sz)  

                + d(fz, gv)]+h [d(fz, Tv) - d(gv, Tv)] 

d(Sz, z) ≤ a d(fz, gv) + b[d(fz, Sz) + d(gv, Tv)] +c [d(fz, Tv)+d(gv, Sz)]+e[d(fz, Sz)  

                + d(fz, gv)]+h [d(fz, Tv) - d(gv, Tv)] 

  d(Sz, z) ≤  a d(Sz, z) + b [ d(Sz, Sz) + d(z, z) ] +c[d(Sz, z)+ d(z, Sz)]  

                   +e [d(Sz, Sz)+ d(Sz, z)]+h[d(Sz, z) - d(z, z) ] 

              ≤  (a + 2c + e + h) d(Sz, z) 

a contradiction. Since a + 2b + 2c + 2e + h < 1. Therefore Sz = z and so Sz = fz =z. Similarly g and T are weakly 

compatible maps then Tz = gz. Now we show that z is a fixed point of T. If Tz ≠ z, then by (2.1) we have 

d(z, Tz) ≤ d(Sz, Tz) 

            ≤ a d(fz, gz) + b[d(fz, Sz) + d(gz, Tz)] +c [
�(�5,   �5)��(�5,   �5)

���(�5,   �5)�(�5,   �5)
] 

               +e[d(fz, Sz) + d(fz, gz)]+h [d(fz, Tz) - d(gz, Tz)] 

            ≤ a d(fz, gz) + b[d(fz, Sz) + d(gz, Tz)] +c [d(fz, Tz) + d(gz, Sz)] 

               +e[d(fz, Sz) + d(fz, gz)] +h [d(fz, Tz) - d(gz, Tz)] 

d(z, Tz) ≤  a d(z, Tz) + b [ d(z, z) + d(Tz, Tz) ] +c[d(z, Tz)+ d(Tz, z)]  

                +e [d(z, z)+ d(Tz, z)]+h[d(z, Tz) - d(Tz, Tz) ] 
d(z, Tz) ≤  (a + 2c + e + h) d(z, Tz) 

a contradiction. Since a + 2b + 2c + 2e + h < 1. Therefore Tz = z and so Sz = Tz = fz = gz = z.  

Finally in order to prove that uniqueness of z, suppose that z and w are distinct common fixed points of  f, g, S and T 

from (2.1) we have, 

d(z, w)≤ d(Sz, Tw) 

            ≤ a d(fz, gw) + b [d(fz, Sz) + d(gw, Tw) ] + c [
�(�5,   �6)��(�6,   �5)

���(�5,   �6)�(�6,   �5)
] 

               +e [d(fz, Sz)+ d(fz, gw)] +h [d(fz, Tw)-d(gw, Tw)] 

             ≤ a d(fz, gw) + b [d(fz, Sz)+d(gw, Tw) ] + c [d(fz, Tz)+d(gw, Sz)] 

               +e [d(fz, Sz)+ d(fz, gw)] +h [d(fz, Tw)-d(gw, Tw)] 

             ≤ a d(z, w) + b [ d(z, z) + d(w, w) ] +c[d(z, w)+ d(w, z)] +e [d(z, z)+ d(z, w)]  
               +h[d(z, w) - d(w, w) ] 

d(z, w) ≤ (a + 2c + e + h) d(z, w) a contradiction . And so z = w, proving that z is unique common fixed point off, g, 

S and T. 

Corollary 2.2 . Let(X, d) be a complex valued metric space and let f, S and T are three self- maps of X such that 

T(X) ⊆ f(X), S(X)⊆ f(X) and satisfying  

d(Sx, Ty) ≤ a d(fx, gx)  + b [ d(fx, Sx) + d(fy, Ty) ] + c[
�(��,   ��)��(��,   ��)

���(��,   ��) �(��,   ��) 
] 

                  +e [d(fx, Sx) + d(fx, fy) ] + h [d(fx, Ty) − d(fy, Ty) ]            

For all x, y ∈X where a, b and c ≥ 0 and a + 2b + 2c + 2e + h < 1. 
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Suppose that the pairs {f, S} and {f, T} are weakly 

compatible then f, S and T have a unique common fixed 

point. 

Proof: The result follows on putting f=g in theorem 

(2.1).  

III. CONCLUSION 

This article investigates common fixed point theorems 

for four self mappings. The concept of weakly 

compatible maps in complex valued metric spaces 

without using notion of continuity. Several Fixed point 

theorems in complex valued  metric spaces such as 

fixed point theorems for  three and two  self mappings 

have been derived in the present study as particular 

cases. 

REFERENCES 

[1]. J. Ali, M. Imdad, (2008). A implicit function implies 
several contraction condition, Sarajevo J. Math. 4(17), 269-
285. 

[2]. A. Azam, B. Fisher and M. Khan, (2011). Common fixed 
point theorems in complex valued  metric spaces, Numerical 

Functional Analysis and optimization, 32(3): 243-253. 
[3]. M. Abbas and B.E. Rhoades, (2009). Fixed and periodic 
point results in cone metric spaces, Appl. Math. Lett., 22: 511-

515. 
[4]. V. Berinde, (2009). A common fixed point theorem for 

quasi-contractive self mappings in metric spaces, Appl. Math. 

Comput., 213: 348- 354. 

[5]. R. Chugh and S. Kumar, (2011). Common fixed points 
for weakly compatible maps, Proc. Indian Acad. Sci. (Math. 
Sci.), 111(2): 241-247. 

[6]. B.C. Dhage, (1992). Generalized metric spaces with fixed 

point, Bull. Calcutta Math. Soc., 84: 329-336. 

[7]. B. Fisher, (1981). Four mappings with a common fixed 
point, J. Univ. Kuwait Sci., 8: 131-139. 

[8]. J. Gornicki and B.E. Rhoades, (1996). A general fixed 
point theorem for involutions, Indian J. Pure Appl. Math., 27: 
13-23. 

[9]. L.G. Haung and X. Zhang, (2007). Cone metric spaces 
and fixed point theorems of contractive mappings, J. Math. 

Anal. Appl., 332: 1468-1476. 
[10]. G.S. Jeong and B.E. Rhoades, (2005). Maps for which 
F(T) = F(Tn), Fixed Point Theory Appl., 6: 87-131. 

[11]. G. Jungck, (1996). Common fixed points for 
noncontinuous nonself maps on non- metric spaces, Far East 

J. Math. Sci., 41: 199-215. 
[12]. G. Jungck and B.E. Rhoades, (1998). Fixed point for set 

valued functions without continuity, Indian J. Pure Appl. 

Math., 29(3): 277-238. 
[13]. R. Kannan, (1968). Some results on fixed points, Bull. 

Calcutta Math. Soc., 60: 71-76. 
[14]. S. Bhatt, S. Chaukiyal and R.C. Dimri, (2011). A 

common fixed point theorem for weakly compatible maps in 
complex valued metric spaces, Int. J. of Mathematical Science 

and Applications, 1(3). 

[15]. S. Radenovich and B.E. Rhoades, (2009). Fixed point 
theorem for two non-self mappings in cone metric spaces, 

Comput. Math. Appl., 57: 1701-1707. 
[16]. S. Rezapour and R. Hamlbarani, (2008). Some notes on 
the paper `cone metric spaces and fixed point theorems of 

contractive mappings'. J. Math. Anal. Appl., 345: 719-724. 
[17]. F. Rouzkard and M. Imdad (2012). Some common fixed 

point theorems on complex valued metric spaces. Computers 

and Math. With Appl., 64: 1866-1874. 
[18]. W. Sintunavarat and P. Kumam, (2012). Generalized 

common fixed point theorems in complex valued metric 
spaces and applications, Journal of Inequalities and 

Applications, 84. 

 

 

 

 

 


